Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Environ ; 46(1): 7, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378650

RESUMO

BACKGROUND: Carbendazim (methyl 2-benzimidazolecarbamate, CASRN: 10605-21-7) exhibits spindle poisoning effects and is widely used as a fungicide. With respect to genotoxicity, carbendazim is deemed to be non-mutagenic in vitro, but it causes indicative DNA damage in vivo and chromosome aberrations in vitro and in vivo. In this study, we examined the mutagenicity of carbendazim in vivo. RESULTS: MutaMice were treated with carbendazim orally at doses of 0 (corn oil), 250, 500, and 1,000 mg/kg/day once a day for 28 days. A lacZ assay was used to determine the mutant frequency (MF) in the liver and glandular stomach of mice. MutaMice were administered up to the maximum dose recommended by the Organization for Economic Co-operation and Development Test Guidelines for Chemicals No. 488 (OECD TG488). The lacZ MFs in the liver and glandular stomach of carbendazim-treated animals were not significantly different from those in the negative control animals. In contrast, positive control animals exhibited a significant increase in MFs in both the liver and glandular stomach. CONCLUSIONS: Carbendazim is non-mutagenic in the liver and glandular stomach of MutaMice following oral treatment.

2.
Environ Mol Mutagen ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115239

RESUMO

Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.

3.
Genes Environ ; 45(1): 29, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990244

RESUMO

BACKGROUND: tert-Butyl hydroperoxide (TBHP; CAS 75-91-2), a hydroperoxide, is mainly used as a polymerization initiator to produce polyethylene, polyvinyl chloride, and unsaturated polyester. It is a high-production chemical, widely used in industrial countries, including Japan. TBHP is also used as an additive for the manufacturing of food utensils, containers, and packaging (UCP). Therefore, there could be consumer exposure through oral intake of TBHP eluted from UCPs. TBHP was investigated in various in vitro and in vivo genotoxicity assays. In Ames tests, some positive results were reported with and/or without metabolic activation. As for the mouse lymphoma assay, the positive result was reported, regardless of the presence or absence of metabolic activation enzymes. The results of some chromosomal aberrations test and comet assay in vitro also demonstrated the genotoxic positive results. On the other hand, in in vivo tests, there are negative results in the bone marrow micronucleus test of TBHP-administered mice by single intravenous injection and the bone marrow chromosomal aberration test using rats exposed to TBHP for 5 days by inhalation. Also, about dominant lethal tests, the genotoxic positive results appeared. In contrast, there is little information about in vivo mutagenicity and no information about carcinogenicity by oral exposure. RESULTS: We conducted in vivo gene mutation assay using MutaMice according to the OECD Guidelines for the Testing of Chemicals No. 488 to investigate in vivo mutagenicity of TBHP through oral exposure. After repeated dosing for 28 days, there were no significant differences in the mutant frequencies (MFs) of the liver and glandular stomach up to 300 mg/kg/day (close to the maximum tolerable dose (MTD)). The positive and negative controls produced the expected responses. CONCLUSIONS: These findings show that orally administrated TBHP is not mutagenic in the mouse liver and glandular stomach under these experimental conditions.

4.
Genes Environ ; 45(1): 12, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041654

RESUMO

BACKGROUND: Styrene (CAS 100-42-5) is widely used as polystyrene and acrylonitrile-butadiene-styrene resin such as plastic, rubber, and paint. One of the primary uses of styrene is food utensils and containers, but a small amount of styrene transferred into food can be ingested by eating. Styrene is metabolized into styrene 7,8-oxide (SO). SO is mutagenic in bacteria and mouse lymphoma assays. It is clastogenic in cultured mammalian cells. However, styrene and SO are not clastogenic/aneugenic in rodents, and no rodent in vivo gene mutation studies were identified. METHODS: To investigate the mutagenicity of orally administered styrene, we used the transgenic rodent gene mutation assay to perform an in vivo mutagenicity test (OECD TG488). The transgenic MutaMouse was given styrene orally at doses of 0 (corn oil; negative control), 75, 150, and 300 mg/kg/day for 28 days, and mutant frequencies (MFs) were determined using the lacZ assay in the liver and lung (five male mice/group). RESULTS: There were no significant differences in the MFs of the liver and lung up to 300 mg/kg/day (close to maximum tolerable dose (MTD)), when one animal with extremely high MFs that were attributed to an incidental clonal mutation was omitted. Positive and negative controls produced the expected results. CONCLUSIONS: These findings show that styrene is not mutagenic in the liver and lung of MutaMouse under this experimental condition.

5.
Toxicol Rep ; 9: 1008-1012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518409

RESUMO

We assessed the genotoxicity of 30 food-flavoring chemicals used in Japan that have not been investigated before. These 30 food-flavoring chemicals have representative chemical structures belonging to 18 chemical classes. The Ames and chromosomal aberration (CA) tests (in vitro tests) were first conducted in accordance with the "Food Additive Risk Assessment Guidelines" of the Japan Food Safety Commission. If the in vitro test yielded a positive result, an in vivo micronucleus test or a transgenic mouse gene mutation assay was performed to verify the in vitro test results. Of the 30 food-flavoring chemicals, 3 yielded a positive result in both Ames and CA tests. Another 11 chemicals yielded positive results in the CA test. However, none of the chemicals yielding positive in vitro test results yielded positive results in the in vivo tests. These findings indicate no genotoxicity concerns of the food-flavoring chemicals belonging to the abovementioned 18 chemical classes used in Japan unless there are other structural modifications.

6.
Genes Environ ; 44(1): 24, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258253

RESUMO

BACKGROUND: Multiwalled carbon nanotubes (MWCNTs) are suspected lung carcinogens because their shape and size are similar to asbestos. Various MWCNT types are manufactured; however, only MWNT-7 is classified into Group 2B by The International Agency for Research on Cancer. MWNT-7's carcinogenicity is strongly related to inflammatory reactions. On the other hand, inconsistent results on MWNT-7 genotoxicity have been reported. We previously observed no significant differences in both Pig-a (blood) and gpt (lung) mutant frequencies between MWNT-7-intratracheally treated and negative control rats. In this study, to investigate in vivo MWNT-7 genotoxicity on various endpoints, we attempted to develop a lung micronucleus assay through ex vivo culture targeting the cellular fraction of Clara cells and alveolar Type II (AT-II) cells, known as the initiating cells of lung cancer. Using this system, we analyzed the in vivo MWNT-7 genotoxicity induced by both whole-body inhalation exposure and intratracheal instillation. We also conducted an erythrocyte micronucleus assay using the samples obtained from animals under intratracheal instillation to investigate the tissue specificity of MWNT-7 induced genotoxicities. RESULTS:  We detected a significant increase in the incidence of micronucleated cells derived from the cellular fraction of Clara cells and AT-II cells in both MWNT-7-treated and positive control groups compared to the negative control group under both whole-body inhalation exposures and intratracheal instillation. Additionally, the erythrocyte micronucleus assay detected a significant increase in the incidence of micronucleated reticulocytes only in the positive control group. CONCLUSIONS: Our findings indicated that MWNT-7 was genotoxic in the lungs directly exposed by both the body inhalation and intratracheal instillation but not in the hematopoietic tissue.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35483777

RESUMO

Sodium azide is a strong mutagen that has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolically converted to the proximate mutagen azidoalanine, which requires further bioactivation to a putative ultimate mutagen that remains elusive. The nature of the DNA modifications induced by azides leading to mutations is also unknown. Other mutagenic organic azido compounds seem to share the same bioactivation pathway to the ultimate mutagenic species as they induce point mutations dependent on the same DNA repair pathways. We investigated mutations induced by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) in the human TK6 cell line. Until now, azides have been considered to be non-mutagens and non-carcinogens in mammals, including humans, as judged only by the conventional clastogenicity chromosomal aberration types of bioassays. Here, we show the potent mutagenicity of AZG in cultured human cells, comparable to alkylating agents such as methyl methanesulfonate at concentrations with similar lethality. The potent ability of an organic azide to induce base substitutions in a mammalian system raises an alert with respect to human exposure to organic and inorganic azido compounds.


Assuntos
Azidas , Mutagênicos , Animais , Azidas/metabolismo , Azidas/toxicidade , Humanos , Mamíferos , Mutagênese , Testes de Mutagenicidade , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Propilenoglicóis
8.
Genes Environ ; 43(1): 30, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271990

RESUMO

BACKGROUND: Perillaldehyde and cinnamaldehyde are natural substances found in plants that are used as flavoring ingredients. Due to the α,ß-unsaturated aldehydes in their structures, these compounds are expected to be DNA reactive. Indeed, several reports have indicated that perillaldehyde and cinnamaldehyde show positive in in vitro and in vivo genotoxicity tests. However, their genotoxic potentials are currently disputed. To clarify the mutagenicity of perillaldehyde and cinnamaldehyde, we conducted in silico quantitative structure-activity relationship (QSAR) analysis, in vitro Ames tests, and in vivo transgenic rodent gene mutation (TGR) assays. RESULTS: In Ames tests, perillaldehyde was negative and cinnamaldehyde was positive; these respective results were supported by QSAR analysis. In TGR assays, we treated Muta™ Mice with perillaldehyde and gpt-delta mice with cinnamaldehyde up to the maximum tested doses (1000 mg/kg/day). There was no increase in gene mutations in the liver, glandular stomach, or small intestine following all treatments except the positive control (N-ethyl-N-nitrosourea at 100 mg/kg/day). CONCLUSIONS: These data clearly show no evidence of in vivo mutagenic potentials of perillaldehyde and cinnamaldehyde (administered up to 1000 mg/kg/day) in mice; however, cinnamaldehyde is mutagenic in vitro.

9.
Genes Environ ; 43(1): 16, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931133

RESUMO

BACKGROUND: Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure-activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model. RESULTS: In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals' Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model "StarDrop NIHS 834_67" showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools. CONCLUSIONS: A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.

10.
Genes Environ ; 43(1): 10, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743813

RESUMO

The PIGRET assay is one of the Pig-a assays targeting reticulocytes (RETs), an in vivo genotoxicity evaluation method using flow cytometry with endogenous reporter glycosylphosphatidylinositol anchor protein. The PIGRET assay with RETs selectively enriched with anti-CD71 antibodies has several desirable features: high-throughput assay system, low background frequency of mutant cells, and early detection of mutation. To verify the potential and usefulness of the PIGRET assay for short-term testing, an interlaboratory trial involving 16 laboratories organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen and Genome Society was conducted. The collaborating laboratories assessed the mutagenicities of a total of 24 chemicals in rats using a single-treatment design and standard protocols for conducting the Pig-a assay on the total red blood cell assay and the PIGRET assay. Here the standard protocol for the PIGRET assay was described in detail.

11.
Mutagenesis ; 36(1): 87-94, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367723

RESUMO

As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.


Assuntos
Ácidos Aristolóquicos/toxicidade , Adutos de DNA , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Taxa de Mutação , Pentosiltransferases/metabolismo , Animais , Benchmarking , Proteínas de Escherichia coli/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Pentosiltransferases/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-31699340

RESUMO

The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Animais Geneticamente Modificados , Biotransformação , Dano ao DNA , Genes Reporter , Vetores Genéticos/genética , Guias como Assunto , Camundongos , Camundongos Endogâmicos , Testes de Mutagenicidade/instrumentação , Testes de Mutagenicidade/normas , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , Mutação , Ratos , Ratos Endogâmicos F344 , Padrões de Referência , Reprodutibilidade dos Testes , Projetos de Pesquisa , Transgenes , Estudos de Validação como Assunto
13.
Genes Environ ; 41: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528240

RESUMO

The open symposium of the Japanese Environmental Mutagen Society (JEMS), under the title of "Comprehensive framework between environment and genomic stability," was held in the Main Conference Room of the Foundation for Promotion of Cancer Research, Tokyo, on June 8, 2019. To understand the relationship between genes and environmental mutagens, the symposium highlights the research activities in the fields of cancer, carcinogenesis and related diseases caused by genomic instabilities, including epigenetic and metabolomic alterations. The symposium was planned to help familiarize attendees with the current trends in research on genome safety. The organizers herein present a summary of the symposium.

14.
Environ Mol Mutagen ; 60(8): 759-762, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31090953

RESUMO

Mutations in the X-linked phosphatidylinositol glycan, class A gene (Pig-a) lead to loss of glycosylphosphatidylinositol (GPI) anchors and GPI-anchored proteins from the surface of erythrocytes and other mammalian cells. The Pig-a gene mutation assay quantifies in vivo gene mutation by immunofluorescent labeling and flow cytometry to detect the loss of GPI-anchored proteins on peripheral blood erythrocytes. As part of the regulatory acceptance of the assay, a public database has been created that provides detailed information on Pig-a gene mutation assays conducted in rats and mice. A searchable version of the database is available through a website designed and hosted by the University of Maryland School of Pharmacy. Currently, the database contains only mouse and rat data, but it is anticipated that it will expand to include data from other species, including humans. A major purpose in developing the database was to aid in the preparation of a Retrospective Performance Analysis and Detailed Review Paper required for Organisation for Economic Co-operation and Development Test Guideline acceptance. We anticipate, however, that it also will be useful for accessing and comparing Pig-a data to data from other assays and for conducting quantitative assessments of Pig-a gene mutation responses. Environ. Mol. Mutagen., 60:759-762, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Bases de Dados Factuais , Eritrócitos/metabolismo , Proteínas de Membrana/genética , Animais , Bioensaio , Camundongos , Testes de Mutagenicidade , Mutação , Ratos
15.
Genes Environ ; 41: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858897

RESUMO

The Pig-a assay, a promising tool for evaluating in vivo genotoxicity, is based on flow cytometric enumeration of red blood cells (RBCs) that are deficient in glycosylphosphatidylinositol anchor protein. Various approaches for measuring Pig-a mutant cells have been developed, particularly focusing on measuring mutants in peripheral RBCs and reticulocytes (RETs). The Pig-a assay on concentrated RETs-the PIGRET assay-has the potential to detect genotoxicity in the early stages of a study. To verify the potential and usefulness of the PIGRET assay for short-term testing, we conducted an interlaboratory trial involving 16 laboratories organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen Society (MMS/JEMS). The collaborating laboratories assessed the mutagenicity of a total of 24 chemicals in rats using a single-treatment design and standard protocols for conducting the Pig-a assay on total RBCs (the RBC Pig-a assay) and the PIGRET assay. Here, we describe the standard protocol for the RBC Pig-a assay in detail.

16.
Genes Environ ; 39: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28074111

RESUMO

INTRODUCTION: It is known that fibrous particles of micrometer length, such as carbon nanotubes, which have same dimensions as asbestos, are carcinogenic. Carcinogenicity of nanomaterials is strongly related to inflammatory reactions; however, the genotoxicity mechanism(s) is unclear. Indeed, inconsistent results on genotoxicity of multi-walled carbon nanotubes (MWCNTs) have been shown in several reports. Therefore, we analyzed the in vivo genotoxicity induced by an intratracheal instillation of straight MWCNTs in rats using a different test system-the Pig-a gene mutation assay-that can reflect the genotoxicity occurring in the bone marrow. Since lungs were directly exposed to MWCNTs upon intratracheal instillation, we also performed the gpt assay using the lungs. FINDINGS: We detected no significant differences in Pig-a mutant frequencies (MFs) between the MWCNT-treated and control rats. Additionally, we detected no significant differences in gpt MFs in the lung between the MWCNT-treated and control rats. CONCLUSIONS: Our findings indicated that a single intratracheal instillation of MWCNTs was non-mutagenic to both the bone marrow and lung of rats.

17.
Artigo em Inglês | MEDLINE | ID: mdl-27931811

RESUMO

The in vivo mutation assay using the X-linked phosphatidylinositol glycan class A gene (Pig-a in rodents, PIG-A in humans) is a promising tool for evaluating the mutagenicity of chemicals. Approaches for measuring Pig-a mutant cells have focused on peripheral red blood cells (RBCs) and reticulocytes (RETs) from rodents. The recently developed PIGRET assay is capable of screening >1×106 RETs for Pig-a mutants by concentrating RETs in whole blood prior to flow cytometric analysis. Additionally, due to the characteristics of erythropoiesis, the PIGRET assay can potentially detect increases in Pig-a mutant frequency (MF) sooner after exposure compared with a Pig-a assay targeting total RBCs (RBC Pig-a assay). In order to test the merits and limitations of the PIGRET assay as a short-term genotoxicity test, an interlaboratory trial involving 16 laboratories was organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagenicity Society (MMS/JEMS). First, the technical proficiency of the laboratories and transferability of the assay were confirmed by performing both the PIGRET and RBC Pig-a assays on rats treated with single doses of N-nitroso-N-ethylurea. Next, the collaborating laboratories used the PIGRET and RBC Pig-a assays to assess the mutagenicity of a total of 24 chemicals in rats, using a single treatment design and mutant analysis at 1, 2, and 4 weeks after the treatment. Thirteen chemicals produced positive responses in the PIGRET assay; three of these chemicals were not detected in the RBC Pig-a assay. Twelve chemicals induced an increase in RET Pig-a MF beginning 1 week after dosing, while only 3 chemicals positive for RBC Pig-a MF produced positive responses 1 week after dosing. Based on these results, we conclude that the PIGRET assay is useful as a short-term test for in vivo mutation using a single-dose protocol.


Assuntos
Laboratórios/organização & administração , Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutação , Reticulócitos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Etilnitrosoureia/toxicidade , Humanos , Relações Interinstitucionais , Reprodutibilidade dos Testes
18.
Mutat Res Genet Toxicol Environ Mutagen ; 811: 135-139, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27931807

RESUMO

The reproducibility of the in vivo Pig-a gene mutation test system was assessed across 13 different Japanese laboratories. In each laboratory rats were exposed to the same dosing regimen of N-nitroso-N-ethylurea (ENU), and red blood cells (RBCs) and reticulocytes (RETs) were collected for mutant phenotypic analysis using flow cytometry. Mutant frequency dose response data were analysed using the PROAST benchmark dose (BMD) statistical package. Laboratory was used as a covariate during the analysis to allow all dose responses to be analysed at the same time, with conserved shape parameters. This approach has recently been shown to increase the precision of the BMD analysis, as well as providing a measure of equipotency. This measure of equipotency was used here to demonstrate a reasonable level of interlaboratory reproducibility. Increased reproducibility could have been achieved by increasing the number of cells scored, as this would reduce the number of zero values within the mutant frequency data. Overall, the interlaboratory trial was successful, and these findings support the transferability of the in vivo Pig-a gene mutation assay.


Assuntos
Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Mutação , Ratos , Reprodutibilidade dos Testes , Reticulócitos/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-27931815

RESUMO

The Pig-a gene mutation assay, a powerful tool for evaluating in vivo genotoxicity, is based on flow cytometric enumeration of red blood cells (RBCs), which are deficient in glycosylphosphatidylinositol anchored proteins caused by mutation(s) in the Pig-a gene. Various approaches for measuring cells with mutated Pig-a gene have been developed. The Pig-a assay targeting concentrated reticulocytes - the PIGRET assay - has the potential to detect genotoxicity in early stages of the study. To verify the potential and usefulness of the PIGRET assay for short-term testing, we conducted a joint research with the Mammalian Mutagenicity Study (MMS) Group of the Japanese Environmental Mutagen Society. As part of this study, we evaluated the genotoxicity of a single oral administration of acrylamide (AA) at 25, 50, 100, 137.5, and 175mg/kg using the PIGRET and Pig-a assays targeting RBCs (RBC Pig-a assay) at 7, 14, and 28 days after dosing. Toxic effects induced by AA, such as hind limb weak-paralysis, reduction of body weight gain, and reticulocytosis, were observed in AA-treated groups. However, we detected no significant increases in Pig-a mutant frequencies using either the PIGRET or RBC Pig-a assay. Therefore, we concluded that the genotoxicity of AA could not be detected by these assays under our experimental conditions.


Assuntos
Acrilamida/toxicidade , Eritrócitos/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Reticulócitos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Proteínas de Membrana/genética , Ratos , Ratos Endogâmicos F344
20.
Artigo em Inglês | MEDLINE | ID: mdl-27637482

RESUMO

The recently introduced Pig-a in vivo gene mutation assay measures endogeneous mutations of Pig-a (human, PIG-A), an X-linked gene that is conserved across species from rodents to humans. Flow cytometric analysis enables the enumeration of glycosylphosphatidylinositol (GPI) anchor-deficient erythrocytes, resulting from a mutation in Pig-a/PIG-A, in only a few microliters of peripheral blood. Pig-a/PIG-A mutations appear to function in a neutral manner, allowing evaluation of the accumulated genotoxic effects of repeated exposures. To date, most Pig-a studies have been conducted in rodents; only a few reports regarding human applications of the PIG-A assay have been published. We have conducted a PIG-A assay in the context of human genotoxicity monitoring. Peripheral blood was collected from healthy human donors and chemotherapy-treated cancer patients at Yamagata University Hospital. To investigate the PIG-A mutant frequency (MF) induced by chemotherapy, red blood cells were analyzed via flow cytometry following staining with allophycocyanin-conjugated anti-CD235ab (erythrocyte specific) and fluorescein isothiocyanate-conjugated anti-CD59 antibodies (GPI-anchored protein specific). Reticulocyte frequencies (%RET) were also analyzed using a phycoerythrin-conjugated anti-CD71 antibody to monitor bone marrow suppression and reticulocytosis. Two of 27 patients exhibited a significantly elevated frequency of PIG-A mutants. Although we observed either a reduced or an increased %RET in all patients, no association was observed between this factor and the PIG-A MF. Unfortunately, we could not analyze blood samples collected before treatment during therapeutic processes. Additionally, the sampling time point for some patients was too short to express the PIG-A mutant phenotypes. Therefore, the possibility of natively high PIG-A MFs prior to treatment must be considered. The human PIG-A assay shows promise as a human genotoxicity monitoring method.


Assuntos
Antineoplásicos/efeitos adversos , Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Reticulócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA